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The dynamical behaviour of stretchable, orientable microstructure suspended in a 
general three-dimensional fluid flow is investigated. Model equations given by 
Olbricht, Rallison & Leal (1982) are examined in the case of microstructure travelling 
through arbitrarily complicated flows of the carrier fluid. As in the two-dimensional 
analysis of Szeri, Wiggins & Leal (1991), one must first treat the orientation dynamics 
problem; only then can the equation for stretch of the microstructure be analyzed 
rationally. In three-dimensional flows that are steady in the Lagrangian frame, 
attractors for the orientation dynamics are shown to be equilibria or limit cycles; this 
asymptotic behaviour was first deduced by Bretherton (1962). In three-dimensional 
flows that are time periodic in the Lagrangian frame (e.g. recirculating flows), the 
orientation dynamics may be characterized by periodic or quasi-periodic attractors. 
Thus, robust (generic) behaviour in these cases is always characterized by a single 
global attractor; there is no asymptotic dependence of orientation dynamics on the 
initial orientation. The type of asymptotic orientation dynamics - steady, periodic, or 
quasi-periodic - is signified by a simple criterion. Details of the relevant bifurcations, 
as well as history-dependent strong flow criteria are developed. Examples which 
illustrate the various types of behaviour are given. 

1. Introduction 
The dynamical behaviour of particles, droplets or polymer molecules in suspension 

(collectively referred to as microstructure) is an important subject in a number of 
different fields. A particularly interesting aspect is the interaction of the flow with the 
suspended phase. In sufficiently dilute suspensions, the influence of the microstructure 
on the flow is very small; thus the interaction problem is decoupled in the case of 
infinite dilution. In this context, it is of interest to establish, in as general a framework 
as possible, the dynamical behaviour that may occur for microstructure suspended in 
flow fields of known form. 

Many authors, as reviewed by Szeri, Wiggins & Leal (1991), have examined this 
question in the light of a further simplification, namely, that the known flow field is 
steady and spatially homogeneous. While the assumption that the effect of the 
microstructure on the flow is minimal is valid in the limit of infinite dilution of the 
suspended phase, the assumption of a steady and spatially homogeneous flow field 
yields dynamical behaviour that is not general. 

In Szeri, Wiggins & Leal (1991, hereinafter referred to as SWL), the means of 
analysing the dynamics of suspended microstructure in complicated two-dimensional 
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flows were developed. The key idea is that the dynamics of the suspended phase differ 
in simple flows (steady from the point of view of the moving particle) and complex flows 
(unsteady from the point of view of the particle) because the forcing of the 
conformation evolution equations is autonomous or non-autonomous, respectively. 
Thus in complex flow, it makes sense to analyse conformation evolution equations only 
over an interval of time, i.e. one must take history into account. The primary results 
of that analysis are: (i) a necessary and sufficient condition for stretching of 
microstructure (i.e. a ' strong flow criterion') in complex, two-dimensional flows that 
takes history into account; and (ii) conditions for the existence of time-dependent 
attracting orientations of microstructure in complex flows, that are analogous to 
steady, equilibrium orientations for microstructure in simple flows. These time- 
dependent attracting orientations were later observed in experiments reported by Szeri, 
Milliken & Leal (1992). In this paper, our goal is to extend the analysis to three- 
dimensional flows. 

We begin the analysis in $2 by listing the governing equations and discussing the 
method of solution of the orientation and stretch dynamics problems for a particle in 
a general flow field. Section 3 involves a characterization of the orientation dynamics 
and stretch of particles suspended in a (known) three-dimensional flow field that is 
steady in the Lagrangian frame. Typical orientation dynamics is characterized by either 
a single attracting orientation to which all particles tend asymptotically (as t + a), or 
a limit cycle of orientations to which all particles tend asymptotically. A strong flow 
criterion is derived. In $4, we treat orientation and stretch dynamics of particles that 
are forced by a flow field that is periodic in the Lagrangian frame. This situation is 
important for particles in recirculating flows that are steady in the Eulerian frame, for 
example. The difference from the analysis of $ 3  is that the history of flows experienced 
by the particles is non-trivial. We find that either particles tend asymptotically to a limit 
cycle of orientations with the same period as the flow, or particles tend asymptotically 
to a quasi-periodic attractor. We develop strong flow criteria, where possible, and 
consider in detail an example problem. 

In $85 and 6,  our goal is to shed light on the stretching behaviour in the absence of 
full information about the flow or the orientation dynamics. In $ 5,  we derive a general 
history-dependent strong flow criterion that applies to microstructure in a general 
time-dependent flow over a time interval 0 < t < T. In $6,  we derive simple weak flow 
criteria that apply along a given particle path, or over a region of the flow. Finally in 
$7, we give our conclusions. 

2. Dynamical equations and solutions 
We consider the dynamical behaviour of a particle, suspended in a flow, which is 

small with respect to lengthscales of the flow, and described by a single axial (state) 
vector. Olbricht, Rallison & Leal (1982) demonstrate that the microdynamical 
equations for a number of different physical systems may be collapsed onto a single 
equation depending on various parameters. Physically, the behaviour of the particle 
evolves according to a locally linear flow field. The model evolution equation for the 
state vector R of an element of the suspended phase is 

R -- d F R - E - R  - R = Q * R + G  E * R - -  ] F T I R *  dt [ F+l IRI2 
In (2. l ) ,  Q and € are the local vorticity and rate-of-strain tensors, respectively, and the 
parameters 0 d G d 1, a 2 0 and F >, 0 correspond to the shape factor, the elastic 
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modulus and the internal viscosity of the microstructure, respectively. Note that G = 1, 
a = F = 0 yields an equation for microstructure that rotates and stretches exactly as 
an infinitesimal line element of the fluid. We assume that the microstructure follows the 
same paths as fluid particles. This assumption may be too restrictive for heavier 
particles. 

It will be convenient in our analysis to separate the stretch and orientation degrees 
of freedom; thus we define R = pu, where R - R = p2 and u - u = 1, following Olbricht 
et al. (1982). This leads to separate evolution equations for the length of the 
microstructure p and the orientation u : 

d - u =  ( Q ( t ) + G € ( t ) ) . ~ - G € ( t ) : u u u  
dt 

= K(t)*U-K(t):UUU, K( t )=Q(t )+G€( t ) ,  ( 2 . 2 ~ )  

I d  G 01 
--p = ---€(t):uu-- 
pdt  P+1 F+ 1' (2 .2b )  

Clearly, one can obtain p after solving ( 2 . 2 ~ )  for the orientation u ( t ;  u,), which depends 
on the initial orientation u?; this procedure yields p( t ;po ,  u,). 

The solution of the orientation evolution equation may be obtained via the 
equivalent deformation gradient tensor approach; see Bretherton (1962) and also 
Lipscomb et al. (1988). We define the equivalent deformation gradient tensor Q to be 
the solution of the linear equation 

K(t) * 0, Q(0) = 1, 
d 
dt 
- Q  = 

where / is the identity tensor. Then the solution of ( 2 . 2 ~ )  may be written 

This procedure works whether K depends on time (complex flow) or not (simple flow). 
Of course, the solution of the nine coupled equations (2.3) may be difficult when these 
are equations with time-dependent coefficients. Physically, the equivalent deformation 
gradient tensor Q ( t )  corresponds to the true deformation gradient tensor between 
reference ( t  = 0) and current ( t )  configurations in physical space, when the shape factor 
G is equal to unity. For a given initial orientation u,, it is a simple matter to integrate 
the stretch equation (2.2 b) and obtain 

Po = exp[ i (GJoTE( t ) :uu( t ;uo)d t -aT  F+ 1 

Much of the analysis that follows depends on the eigenvalues of the tensors K and 
0. There are two important properties of these tensors that we shall make frequent use 
of: (i) tr[K(t)] = 0, due to incompressibility, and (ii) det[Q(t)] = 1, due to incom- 
pressibility and to equation (2.3). The latter property is proved as follows. We make 
use of a Taylor series and equation (2.3) to write 

Q(t  + At) = Q(t)  + At K(t) - Q ( t )  + o(At). 

The determinant of Q ( t + A t )  is 

det [Q(t  + At)] = det [ / + A t ~ ( t ) ]  det [Q(t)]  + o(At). 
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The first determinant on the right-hand side is computed using the characteristic 
polynomial, which gives 

det [/+ At~(t)] = 1 + (At) tr [~( t ) ]  + o(At). 

Thus, the time derivative of det [Q(t)] may be written 

(dldt) det [Q(t)] = tr [K(t)] det [Q(t)]. 

This quantity is zero, owing to incompressibility of the fluid. Hence, the equivalent 
deformation gradient tensor retains its initial determinant for all time, which is one. 

We remind the reader that the true deformation gradient tensor (Q when G = 1) 
associated with motion of a continuum has a determinant of unity if and only 
if the continuum is incompressible. The previous analysis shows that the property 
det[Q(t)] = 1 also holds for G =k 1. 

3. Simple flows 
When the flow is simple ( ~ ( t )  = constant), then the right-hand-side of (2 .2~)  is a 

steady vector field on the sphere of orientations. In this section, we argue from 
topological considerations and from knowledge of the form of the form of the solution 
(2.4), that there are two generic (i.e. ‘typical’) types of dynamical behaviour in simple 
three-dimensional flows. Either particles are eventually attracted to a single equilibrium 
orientation, or particles are eventually attracted to a limit cycle of orientations that lies 
in a planar subset of the sphere of orientations. The asymptotic behaviour we describe 
here was deduced by Bretherton (1962). In this section we review these results in a 
modern setting, and explore the relevant bifurcations that connect the two types of 
generic behaviour that may occur. 

3.1. Orientation dynamics 
From (2.4), an equilibrium orientation U, satisfies 

In other words, an equilibrium orientation must be a (steady) eigenvector of the 
equivalent deformation gradient tensor Q(t), with the associated eigenvalue 
lQ(t). U,l. It is clear from (2 .2~)  that an equilibrium orientation U, is also an 
eigenvector of the constant tensor K :  

Thus, the eigenvalue of K associated with the eigenvector U, is K: U, U,. 
In order to establish the relationship between the two eigenvalues K: U, U, and 

lQ(t) - U,l corresponding to the eigenvector U,, we take the inner product of (2.3) 
with an equilibrium orientation U, and make use of (3.1) and (3.2) to obtain 

(dldt) Q * U, = lQ(t) - U, I (K: U, U,) U,. (3.3) 
Now we consider the evolution of the eigenvalue lQ(t). U,l. Differentiation with 
respect to time, and use of (3.3) yields 

with solution 
(dldt) lQ(t> * u e  I = lQ(t) * u e  I (K: u e  u e ) ,  

lQ(t). V,l = exp(tK: U, U,). (3.4) 
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Thus, the eigenvalue of the equivalent deformation gradient tensor Q(t) ,  lQ(t)  - U, 1, 
is the exponential of the associated eigenvalue of K, K: U, U,, multiplied by time. 

The range of possible dynamics in simple three-dimensional flows is thus limited by 
the properties of generic 3 x 3 ,  steady, traceless tensors K. One can classify generic 
tensors K based on their eigenvalues: either K has one real and two complex-conjugate 
eigenvalues, or it has three real, distinct eigenvalues. Non-generic tensors K have an 
eigenvalue with zero real part, or two or more equal eigenvalues. A slight perturbation 
of a non-generic tensor K changes it into a generic tensor. Hence the commonly 
analysed flows : simple shear (eigenvalue with zero real part), and bi-axial or uniaxial 
flow (two eigenvalues equal) are not generic. We analyse the two generic cases in turn. 

Case 1 : K has three distinct, real, non-zero eigenvalues 
When K has three real, distinct eigenvalues ( A l ,  A ,  and A3), Schur's theorem (Cullen 

1979) asserts that there are orthogonal coordinates in which the tensor K takes the form 

Incompressibility requires A,+A,+A, = 0. Equation (2.3) may be solved to obtain 

where 

1 
= ( A 1 - A 2 ) ( A 1 - A , ) ( A 2 - A 3 )  LeAlt ( A ' Z - A 3 ) ( K 1 2  K 2 3 + K 1 3 ( A l - A 2 ) )  

+ eAzt (A3 - A,) q2 ~ 2 3  + eAit (A,  - A,)(K, ,  ~ 2 3  - ~ 1 3 ( A 2  - A 3 ) ) ] .  
The associated particle orientation dynamics may be understood from (2.4). One can 

show that there are three invariant great circles of the sphere of orientations, i.e. three 
circles, centred at the origin of the sphere of orientations associated with a given 
particle, on which the motion is invariant. The invariant great circles lie in planes 
normal to the vectors 

(3 -7) 

Hence u - n@) = 0 implies di) + du/dt = 0; in fact these relations determine the normals 
to the three invariant great circles. The three invariant great circles provide a 
framework for understanding the orientation dynamics of all initial orientations. The 
equilibrium orientations corresponding to A, are at the intersections of the great circles 
lying in the planes normal to di); hence, 
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FIGURE 1. A sketch of the phase portrait in orientation space when the equivalent deformation 
gradient tensor has three real, distinct eigenvalues. The heavy curves are the invariant great circles. 
At the intersection of the invariant great circles are the equilibrium orientations. 

The three equilibrium orientations (3.8) correspond to six fixed points of the vector 
field on the surface of the unit sphere, owing to the symmetry u+-u. A sketch of 
orientation space is shown in figure 1. Note that the three equilibrium orientations 
given in (3.8) are not normalized, as the formulae are too long. The stability types of 
the six fixed points on the surface of the sphere are constrained, as shown in Arnol’d 
(1973). In our case, these restrictions imply that there must be two nodes (or foci) and 
one saddle point in any hemisphere, among the six fixed points we know to exist. Any 
of the three invariant great circles serves to divide the sphere of orientations into two 
hemispheres. Each hemisphere is further divided into four cells, where each boundary 
of each cell is an arc of one of the invariant great circles. The cells are therefore 
spherical triangles, with equilibrium orientations at the vertices. Because one of the 
vertices must be a saddle point, and the other two nodes, the nodes must be of differing 
stability type, as indicated in the sketch. 

One can analyse the stability of equilibrium orientations by a linear stability analysis 
of ( 2 . 2 ~ ) .  We let u(t: u,) = u:) + Su(t), where 6u(t) is a perturbation. Equation ( 2 . 2 ~ )  
may be written 

where 

The norm of the perturbation ISu(t)l evolves according to 

(d/dt) SU = M * SU+ o ( ~ S U ~ )  

M=K-(GE: v‘,“’v‘:’)[/+2uJ’@ u J ’ ] + 2 u J ’ @ ( Q -  u!’). 

i(d/dt) ISuI2 = SU * M * SU+ O(ISUI~)  
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In the coordinate system in which K has the representation (3.5), this equation reads 

Now, if we take i = 1, then @ = (1,0,0) and 6u = (0, Su,, 6u3) by virtue of the fact that 
6u - U:) = 0. Thus we have 

2 dt 

As one might expect, if A, > h2 > A,, then the quadratic form is negative definite and 
so the equilibrium is stable. Hence, the equilibrium orientation (eigenvector O f  K) which 
corresponds to the maximum eigenvalue of K is the stable one. The asymptotic 
behaviour of microstructure in simple flows where K has three real, distinct eigenvalues 
is as follows. The cell boundaries are boundaries of the orbits. Within each cell, orbits 
tend to the unstable node as t + - 00, and to the stable node as t + + 00. This family 
of orbits limits on the saddle point, as shown in figure 1. 

As a special case of the preceding analysis, one may consider irrotational flow 
(S2 = 0). In this case K may be written as a diagonal tensor by an orthogonal change 
of coordinates. Then the invariant great circles lie on planes normal to the vectors 
#) = e, parallel to the orthogonal basis. The equilibrium orientations are then 
coincident with the normal vectors of the invariant planes, i.e. U:) = +nC0. Finally, the 
equivalent deformation gradient tensor has the special form Q,, = 0 ( i  + j )  and 
Qii = exp [th,]. In this situation, it is readily seen that the microstructure lines up with 
the eigenvector of the rate-of-strain tensor associated with the maximum eigenvalue. 

Case 2: K has I real, non-zero eigenvalue, and a complex-conjugate pair 
In case 2, there is but one equilibrium orientation U,, with corresponding eigenvalue 

A ,  += 0. By Schur's theorem, there is an orthogonal change of coordinates in which the 
tensor K takes the form 

A, K12 

K =[; :;; 3 (3.9) 

I 

Corresponding to the fact that the other eigenvalues of K are assumed to be a complex- 
conjugate pair, we must have 

Equation (2.3) has the solution 
4 K 2 3 K 3 2  - ( K 2 2 - K 3 3 ) 2 .  

~ X P  (thJ Q12<t> Qi3(t) 

[ 0 Q 3 2 ( t )  Q 3 3 ( t )  

Q(t> = 0 Q 2 2 < t )  Q z 3 ( t )  . 

The formulae for Q,(t) can be computed without difficult, but are too long to be 
included here. 

In case 2, there is a single invariant great circle, which lies in the plane normal to the 
vector 
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FIGURE 2. Phase portrait of the sphere of orientations when the equivalent deformation gradient 
tensor has but one real eigenvalue. Note the invariant great circle, which is a stable limit cycle when 
the equilibrium orientation is unstable, and unstable limit cycle when the equilibrium orientation is 
stable (arrows reversed). 

The equilibrium orientation in these coordinates is U, = f ( l , O , O ) .  As U, is not 
contained in the great circle, the circle constitutes a periodic solution. 

The stability of U, may be assessed by linear stability analysis, as before. In this case, 
we obtain 

owing to the orthogonality of U, and Su. The eigenvalues of the quadratic form are 
then computed subject to the assumption of incompressibility of the flow (tr [K] = 0); 
this yields the eigenvalues of U, 

-:Al f t[(K,, - K33)2 + 4Kz3 K321’. 

By assumption, the term within the square root is negative in case 2. Consequently, the 
quadratic form is negative definite when A, > 0; this corresponds to U, stable. When 
A, < 0, U, is unstable. The asymptotic behaviour of orbits in case 2 is as follows. When 
U, is stable (case 2a, A, > 0), then all orbits are attracted to U, via a spiral trajectory 
on the surface of the sphere. The periodic solution is an unstable limit cycle. When U, 
is unstable (case 2 b, A, < 0), then all orbits are attracted to the periodic solution, which 
is a stable limit cycle. 

Remarks on structural stability 
Structural stability concerns the robustness of the qualitative dynamics in a 

dynamical system with respect to small changes in the governing equations. In the 
analysis of microstructure suspended in simple, two-dimensional flow fields in SWL, it 
was found that the dynamical behaviour of microstructure is structurally stable only 
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Case Eigenvalues (K) Attractor Strong flow criterion 
1 A, > A,  > A, Steady, Ile, A, > CL 

2a A, > 0 real Steady, lle, A, > CL 

A, = h3 
2b A, < 0 real Limit cycle in a plane 

A, = x, ;/: K:u,,(~) y,(t) dt > a 

TABLE 1. Summary of results in steady flows 

in flows where there is a single stable equilibrium, an unstable equilibrium, and a 
saddle. Such two-dimensional, simple flow fields are an example of case 1. As we have 
established, there are two other generic possibilities when the flow field is three- 
dimensional. 

3.2. Stretch of the microstructure 
Now that we understand the generic possibilities for the orientation dynamics of 
particles in simple three-dimensional flows, we can formulate criteria for stretch of the 
microstructure. According to (2.5), microstructure that follows the orientation time 
trace u(t; uo) in a simple flow will stretch when 

It makes sense to apply this criterion to that particular orientation time trace u(t; uo) 
which is the unique attractor for the particular simple three-dimensional flow in 
question. Of course particles may stretch before their orientations reach the attractor ; 
however, specializing our criterion to particles with orientations that lie on the 
attractor will yield a result that is valid asymptotically in time. If there is a single 
attracting equilibrium orientation U,, corresponding either to case 1 or to case 2a, then 
the appropriate strong flow criterion is therefore 

A, > a, (3.11) 
where A, = GE: U,U, is the eigenvalue of K associated with the eigenvector U,. If there 
is a stable limit cycle (case 2b), then the appropriate strong flow criterion is 

G€:~oTulc(t)u,,(t)dt T > a, (3.12) 

where ul,(t) = u,,(t+ T )  is the limit cycle of period T. The latter criterion takes into 
account the history of the orientation dynamics on the attractor. it is interesting to note 
that history may be important even in a steady flow! For future reference, we 
summarize in table 1 the results concerning orientation dynamics and strong flow 
criteria of particles suspended in a three-dimensional flow that is steady in the 
Lagrangian frame. 

Relation to known results for  simpleflows 

the strong flow criterion 
Re(h) > a. 

Here, h is the eigenvalue of K with largest real part, and a is the elastic modulus of the 
microstructure. This criterion corresponds exactly to (3.1 1) when the attractor is an 

In the special case of simple flow, where K is constant, Olbricht et al. (1982) obtained 

(3.13) 
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equilibrium orientation. However, when the attractor is a limit cycle, the strong flow 
criterion of Olbricht et al. (1982) does not apply, as the history of the motion is not 
taken into account. Example 111, below, is a demonstration of this point. 

3.3. Example I :  two-dimensional flows with an attracting equilibrium orientation are 
structurally stable 

The first example we give demonstrates that the particle dynamical behaviour in two- 
dimensional flows with an attracting equilibrium orientation is robust. We illustrate 
this point by adding a small three-dimensional perturbation to such a two-dimensional 
flow, and observing the changes in particle dynamical behaviour. We shall see that 
although the attracting equilibrium shifts in the perturbed flow, the qualitative 
dynamics are unchanged. Of course, the small three-dimensional perturbation is not 
arbitrary, and so this analysis does not constitute a proof of robustness but merely a 
demonstration. 

We begin with a two-dimensional example flow taken from SWL, $2.2; we set 
Ei, = 0 except for Ell = -Ezz = 3, and O,, = 0 except for a,, = -O,, = 2. When 
G = 1, there is a single attracting equilibrium orientation and a repelling equilibrium 
orientation in the (x,y)-plane, and a saddle on the z-axis. The phase portrait for the 
particle orientation dynamics is shown in figure 4 of SWL. The (generic) particle 
orientation dynamics in this unperturbed flow are therefore an example of case 1 in 
table 1. Next, we add a small rotational component to the flow about the y-axis, with 
associated vorticity E :  

0 0 -& 
a,= 0 0 [, 0 8 1. 

Thus, the full flow K = GE+Q+Q, is slightly three-dimensional for small E .  

When E + 0, we compute the eigenvalues and eigenvectors of K. For - 1.6 < E 6 1.6, 
we find a stable node, an unstable node and a saddle, together with their symmetric 
opposites, at every value of E .  Thus, all the flows with - 1.6 < E < 1.6 belong to case 
1 of our general analysis. The locations of the equilibria shift as we vary 6, as shown 
in figure 3. However, even after a substantial perturbation of this structurally stable 
flow the dynamics retains the same character as in the unperturbed flow, i.e. the flow 
remains an example of case 1. 

3.4. Example 11: two-dimensionalj2ows without an attracting equilibrium orientation 
are structurally unstable 

In the second example, we illustrate the fact that strictly two-dimensional flows without 
an attractor are structurally unstable. We add a small three-dimensional perturbation 
to a two-dimensional flow that rotates every initial orientation along a unique periodic 
trajectory, analogous to the ‘Jeffery’ orbits of particles in simple shear flow (cf. Jeffery 
1922). The slight three-dimensionality changes the asymptotic dynamical behaviour 
radically from the behaviour in purely two-dimensional flow. 

Again we borrow an example from SWL, $2.2; we set Egj = 0 except for El, = 
- E,, = 1, and O, = 0 except for a,, = -021 = 2. When G = 1, there is no attracting 
equilibrium orientation. There is only a centre on the z-axis. The phase portrait of the 
particle orientation dynamics in the unperturbed flow is shown in figure 2 of SWL. 
Clearly, the (non-generic) unperturbed flow is neither an example of case 1 nor of case 
2a or b. 

As in Example I, we add Q,, a small rotational component to the flow about the 
y-axis, with associated vorticity E .  As we vary the perturbation vorticity E ,  the location 
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FIGURE 3. Equilibrium orientations of a family of three-dimensional flows that contains a given two- 
dimensional flow in which the orientation dynamics are structurally stable (Example I). The equilibria 
are plotted over the parameter range E = - 1.6 (open circles) to e = 1.6 (closed circles). Perturbations 
( E  + 0) do not change the qualitative nature of the dynamics, which remains an example of case 1 even 
under a strong perturbation. 

of the equilibrium in this family of flows shifts, as shown in figure 4(u) for the range 
- 1.6 < E < 1.6. It would seem, at first glance, that the unperturbed flow K = G € + Q  
is robust to the perturbation Q,, as the number of equilibria do not change. However, 
the stability type of the equilibrium does change when e + 0. In figure 4(b), we plot the 
(real) eigenvalue that characterizes the stability of the equilibrium orientation (A,  of K). 
Note that when 6 = 0, A, = 0 corresponding to the centre in the unperturbed flow. 
When E is different from zero, no matter how slightly, the corresponding equilibrium 
orientation becomes an attractor, and all the closed trajectories of the unperturbed 
flow are broken except, of course, for the invariant great circle. Under the perturbation, 
the non-generic unperturbed flow is transformed into a generic example of case 2a of 
table 1. 

An alternate perturbation that produces interesting dynamics is to add 

0 

0 2 E  
E, = [; 0 - €  :] 

to the basic flow. This corresponds to the addition of a slight uniaxial straining flow 
when E > 0, or to a slight bi-axial straining flow when e < 0. As E varies we find that, 
due to the symmetries of this family of flows, the equilibrium orientation remains at 
- + (0, 0,l). However A, = 2 ~ ;  thus, the equilibrium changes from unstable when E < 0 
to stable as e > 0, as one might expect. In either case, the closed orbital trajectories of 
the unperturbed flow are broken for E + 0. 

6 FLM 250 
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- 1  1 

FIGURE 4. (a) A plot of the equilibrium orientation of a family of three-dimensional flows that 
contains a given two -dimensional flow in which the orientation dynamics are structurally unstable 
(Example 11). The equilibria are plotted over the parameter range e = - 1.6 (open circles) to e = 1.6 
(closed circles). Perturbations ( E  + 0) do not change the number of equilibria, but do change their 
stability type and therefore also the phase portrait. (b) The real eigenvalue (A ,  of IC) associated with 
the equilibrium orientation shown in (a) versus the parameter e.  Note that for E + 0, the equilibrium 
is a stable focus, thus breaking the closed orbital trajectories that exist in the degenerate case e = 0, 
in which the equilibrium orientation is a centre (metastable). 

6 

3 .5 .  Example 111: cases I and 2 are connected by saddle-node bifurcation 
on a limit cycle 

In this third example we consider a family of flows depending on a parameter, such that 
the flows are examples of case 1 for some values of the parameter, and of case 2 for 
others. First, we demonstrate that cases 1 and 2 are connected by a special type of 
global bifurcation, namely a saddle-node bifurcation on a limit cycle. Thompson & 
Stewart (1986) give a description of this phenomenon, which they refer to as ‘omega 
explosion’. Next, we analyse the stretch degree of freedom in order to see how the 
stretch depends on the orientation dynamics. 

In order to illustrate these points, we construct a 1-parameter family of flows; we set 
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FIGURE 5. (a) Phase portrait of the orientation dynamics in the flow of Example I11 for parameter 
values that yield case 2b dynamics. There is but one (unstable) equilibrium, and a stable limit cycle. 
(b) Phase portrait of the orientation dynamics in the flow of Example 111 at the bifurcation value of 
the parameter. There is one unstable equilibrium, a metastable equilibrium, and two invariant great 
circles. (c) Phase portrait of the orientation dynamics in the flow of Example 111 for parameter values 
that yield case 1 dynamics. The degenerate orientation of (b) has split into a stable orientation and 
a saddle. There are three invariant great circles. (d )  A plot of the critical value of the elastic modulus 
of particles versus the parameter e, for the family of flows of Example 111. Note the dramatic 
transition that occurs at the bifurcation value of the parameter, ecrit = 2, owing to the catastrophic 
nature of the global bifurcation there. 

Eij = 0 except for El, = - E,, = e, and L?$f = 0 except for GI, = -azl = 2, and put 
K = GE+ Q + GE,. We take G = 1 hereafter, for simplicity. The eigenvalues of K are 

2s, - E + (e2 - 4)t, - E - (e2 - 4);. 

When e = 1, this flow is of case 2, with an attracting limit cycle when e < 0 (case 2b), 
and an attracting equilibrium for e > 0 (case 2a). When e = 3 ,  this is a case 1 flow, with 
a single attracting equilibrium orientation, a repelling equilibrium orientation, and an 
equilibrium orientation of saddle type. The critical value of the parameter at which the 
bifurcation occurs is ecrit = 2. 

In figure 5(a), we show the phase portrait for the orientation dynamics when e = 
1.8 < ecrit (and E =  - 1). In figure 5(b) is the phase portrait at the critical value of the 
parameter e. Finally, in figure 5 c ,  the phase portrait for e = 2.2 (and e = - 1) shows 

6-2 
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that the new saddle and node have appeared on the limit cycle, together with their 
associated invariant curves. In figure 5(c), the attractor is the new, stable node. 

In our efforts to quantify stretching of particles in $3.2, we developed strong flow 
criteria that depend on the type of attractor for the orientation dynamics. As we have 
observed, the nature of the attractor for the present flow changes from a limit cycle to 
an equilibrium orientation as e changes from 1 to 3. It is interesting to see how this 
change is reflected in the stretching characteristics of the flow. Therefore, for e < ecrit 
(limit cycle), we define the critical elastic modulus for stretch of the microstructure by 

l T  
acr i t  TI, K: ulc(t) ulc(t) df 

from (3.12); when a < acrit the particle stretches. We define an angular variable a that 
serves to parameterize the limit cycle in the (x, y)-plane: ulc(t) = (cos a(t), sin a(t), 0). 
This is substituted into the evolution equation for u, to obtain an equation for a: 

(d/dt)a(t) = -esin2a(t)-2. 
This equation is easily integrated to obtain a periodic solution. The critical a is 

-e  (e < 2). 1 1 [ (e2+4)(e2-4-16n2) 
acrit = -log 

4T (e2 -4)(e2 + 87ce +4 + 167~') 
If we take the limit of this expression as e approaches ecrit from below, we obtain 

acrit = 1. Note that this expression is in accord with K: ulc ulc = 1 + e cos (2a) evaluated 
at ecrit and at a = -in, which is the metastable equilibrium that appears on the limit 
cycle in the global bifurcation at ecrit. It is interesting to note that when e = ecrit, the 
stretching power of the flow varies over the limit cycle from - 1 < K: ulc u,, 6 3. Thus, 
the metastable equilibrium occurs in an orientation that is not the orientation of 
maximum stretch. Hence, when e = ecrit, the microstructure lingers forever in an 
orientation that is not the orientation of maximum stretching. 

For e > ecrit, we define the critical elastic modulus to be (cf. (3.1 1)) acrit = K: U, U, 
where U, is the stable equilibrium orientation; hence 

Again, when e approaches ecrit from above, the limit of acrit is 1 for e = - 1. Note that 
this equation for aCrit is the same that one would obtain from the strong flow criterion 
of Olbricht et al. (1982), which we recalled in (3.13). 

For a fixed value of e, the microstructure (on the relevant attractor) will stretch 
whenever a < aCrit. A graph of acrit versus the parameter e for E = - 1 is shown in 
figure 5 (d). Note the abrupt change in acrit at the bifurcation value ecrit. The sensitive 
nature of the dependence of aCrit on e reflects the discontinuous (catastrophic) nature 
of this bifurcation. In going from e = 3 to e = 1, there is no hint of the impending 
catastrophe at ecrit to someone observing a particle in the flow. At ecrit, the attractor 
suddenly changes from a steady equilibrium orientation to a limit cycle. In going from 
e = 1 to e = 3, the only hint of impending bifurcation is temporal intermittency, in 
which the orientation on the attractor lingers longer and longer in an almost steady 
orientation, and then suddenly rotates by almost a full 180". 

acrit = (e2 - 4); - e (e  > 2). 

4. Time-periodic flows 
The dynamics of particles are much richer in flows that are time dependent in the 

Lagrangian frame, owing to the non-autonomous nature of the orientation and stretch 
equations in that case. Time-periodic flows are of great significance in applications. For 
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example, steady, recirculating flows in the Eulerian frame appear time periodic in the 
Lagrangian frame, when the microstructure follows the same paths as a fluid particle. 
A second example is a steady flow in a spatially periodic domain such as a wavy-wall 
tube. 

4.1. Orientation dynamics 
In flows that are T-periodic in the Lagrangian frame associated with an element of the 
microstructure, the right-hand side of (2.2a) is unsteady in orientation space. Rather 
than study the continuous-time dynamics in orientation space, we examine the 
Poincart map of the sphere of orientations to itself. The PoincarC map 9 is defined by 
9 ( u J  = u(t = T ;  uo). The map 9 is related to the equivalent deformation gradient 
tensor 0, evaluated at the period of the flow T, by the equation 

Fixed points of the PoincarC map U ,  correspond to time-periodic solutions of the 
underlying differential equation; thus u(t + T ;  U,) = u(t; U,). Moreover, fixed points 
of 9 are eigenvectors of the equivalent deformation gradient tensor 0, evaluated at the 
period of the flow T, with corresponding eigenvalue lQ(T) - U,l. 

A major difference from the simple flow case is that Q ( T )  and K do not have a 
common set of eigenvectors, in general. The eigenvalue of Q(T) associated with U ,  can 
be related to the tensor K as follows. We take the product of (2.3) with U ,  and make 
use of (2.4) to obtain 

This result is used to derive 
(d/dt) Q(t) - V ,  = K(t) * u(t; U,) lQ(t) - UTl. 

(d/dt) lQ(t) U,( = u(t; U,).  (d/dt) Q(t) - U,  
= U ( t ;  u,) * K(t) - U(t; U,) lQ(t) * u,l. 

This equation may be integrated to obtain the solution 
T 

lQ(T) - U,l = exp u(7; U,) - 4 7 ) .  4 7 ;  U,) d7. ( 4 4  
0 

Thus, the eigenvalue of Q(T)  associated with the eigenvector U ,  takes into account the 
history of the flows and orientations experienced by a particle which follows the 
periodic orbit associated with U,. Note that eigenvalues of Q(T) corresponding to real 
eigenvectors U,  must be positive, as they are exponentials of finite quantities. 

The dynamics of 9 are thus related to the properties of generic, second-rank tensors 
Q(T).  Thus, our arguments in this section will be of a similar form to those in 93. One 
major difference is that the eigenvectors associated with real eigenvalues of Q ( T )  are 
fixed points of the PoincarC map 9, and therefore correspond to periodic orientations 
with period T. We analyse the two generic types of behaviour in turn. 

Case I : Q ( T )  has three distinct, real, positive eigenvalues. 
In this case, there are three eigenvectors, or fixed points of the PoincarC map, V!), 

i = 1,2,3. By Schur’s theorem, Q(T)  may be written as an upper triangular matrix with 
the (constant) eigenvalues ti appearing on the diagonal. Then the Poincart map 9 may 
be written 

(4.3) 
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By analysis of (4.3), one can show that there are three invariant great circles of the 
PoincarC map on the sphere of orientations. Hence, a particle orientation which begins 
on one of the invariant great circles will return to the same invariant great circle at 
every period of the flow, ad infiniturn. The invariant great circles lie on planes normal 
to the vectors given by (3.7) with ti substituted for A,, and Qij substituted for K ~ ~ .  The 
fixed points of the PoincarC map are at the (six) intersections of these great circles; the 
associated periodic orbits pass through the fixed points at every multiple of the period 
of the flow. These points are given by the orientations U$, which are identical to U:) 
of (3.8) with t6 substituted for A,, and Q, substituted for K ~ ~ .  

The stability of a fixed point may be determined by a linear stability analysis of the 
PoincarC map about the fixed point, as follows. First, we compute the derivative of 9 

ti Qiz  Qi, 

9 (1:) uz = [ 0 0 Qzz Q,, :A(!:) 

where D, is the derivative with respect to u, i.e. the gradient operator on the sphere of 
orientations, and Su, = (Suy), Su(zo), Sur)). Now we consider the stability of U$). 
Because u is a unit vector, we must have U,1)*6uo = 0;  hence Suy) = 0. The linearized 
PoincarC map may be written 

-’ Ei Q i z  Q13 

[i ::: (4.4) 
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(3.10) with f;, substituted for A,, and Qt, substituted for K ~ ~ .  Also, there is a fixed 
orientation U ,  = k (1, 0,O). The fixed point is not contained in the invariant great 
circle, and so the circle is associated with a (generally) quasi-periodic motion in 
the system, by the following arguments. Consider an initial orientation that lies on the 
invariant great circle. This orientation will map to another orientation that lies on the 
invariant great circle after one period of the flow, and so on. Future iterates will make 
their way around the invariant great circle without stopping. After some number of 
forward iterates of the PoincarC map, the point will eventually pass all the way around 
the invariant great circle, and so will pass through the initial orientation and on to a 
second circumnavigation of the great circle. This process continues indefinitely. In the 
very special case where some future iterate of the initial orientation coincides exactly 
with the initial orientation, say P"(uo) = uo(m > l), then that initial orientation is m- 
periodic in the map, and also in the underlying differential equation, where the solution 
has the property u( t ;  uo) = u(t + mT; uo). Otherwise, the dynamics are quasi-periodic, 
and the integral curve u(t;  u,) never repeats itself. We consider the fate of orientations 
that are not initially on the invariant great circle after analysing the stability of the fixed 
point of the map. 

The stability of the fixed orientation U,, and of the associated periodic integral 
curve u(t; U,) is assessed as before. The linearization of 9 is 

with eigenvalues 

By assumption, the 
complex conjugates 

1 
- KQ22 + Q33) 1- ((Q22- Q 3 d 2  +4€& Q32)'l. 
261 

term within the square root is negative; thus the eigenvalues are 
with modulus square 

-det[ 1 Q22 Q23 1. 
6; Q32 Q33 

Now, this determinant is equal to the product of the eigenvalues of the matrix 

E:: 21, 
which are the remaining eigenvalues in the spectrum of Q ( T )  after removal of {&}. The 
product of all three eigenvalues of Q ( T )  is 1. Therefore, the modulus square of the 
eigenvalues of the linearization of the PoincarC map at the single fixed orientation U,  
is l/(:. Hence, t1 > 1 corresponds to U ,  stable, and tl < 1 to U,  unstable. 

Thus, we have established that there are two generic types of asymptotic behaviour 
in time-periodic, three-dimensional flow fields. Either the microstructure is phase 
locked (case 1 or case 2a > 1)); or, the microstructure tumbles in a quasi-periodic 
fashion (case 2 b with t1 < 1). 

Bifurcations of orientation dynamics in time-periodic flows 
In Example 111, we considered a family of steady flows depending on a parameter 

that produce dynamics of case 1 for some parameter values and case 2 for others. These 
two types of dynamical behaviour are connected by a saddle-node bifurcation on the 
limit cycle of the case 2 flow. In time-periodic flows, the dynamics can undergo a similar 
bifurcation. 
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A case 2 time-periodic flow, in which the Poincart map for orientation dynamics has 
a fixed orientation and an invariant curve, is connected to a case 1 flow, in which there 
are three fixed orientations, by a saddle-node bifurcation of the Poincare map on the 
invariant great circle of the case 2 flow. In this way, the orientation dynamics can 
bifurcate from phase-locked to quasi-periodic behaviour (or the reverse) as one varies 
a parameter. The latter is an example of intermittency and entrainment; we refer the 
reader to Thompson & Stewart (1986) for a general discussion. As we have seen in 
Example 111, when the attractor for the orientation dynamics changes abruptly, there 
are important ramifications for the stretch of particles, to which we now turn our 
at ten tion. 

4.2. Stretch of the microstructure 
We have argued that it is most sensible to develop strong flow criteria based on 
integration of (2.5) on the attractor. One must keep in mind, however, that stretch may 
occur during the initial transient in the orientation dynamics. When there is a stable 
fixed point of the Poincart map, there is a periodic attractor for the orientation 
dynamics. The fixed point, in turn, is related to an eigenvector U ,  of the equivalent 
deformation gradient tensor Q(T) evaluated at a period of the flow, with associated 
eigenvalue El > 1.  We therefore combine (2.5) and (4.2) in order to obtain the strong 
flow criterion 

that relates 6, and the period of the flow T to the elastic modulus of the particle a. 
Recall from our previous arguments that the eigenvalue t1 characterizes the stability of 
the periodic integral curve. Clearly, the strong flow criterion can only be satisfied when 
the periodic integral curve is an attractor (5, > 1). Hence the eigenvalue El determines 
both the stability of the associated eigenvector, and the total stretching capacity of the 
flow for particles that follow the attracting integral curve. The criterion (4.5) is in 
accord with our previous results for time-periodic, two-dimensional flows presented in 
SWL. This may be shown by deriving (4.5) in spherical polar coordinates. and 
restricting to two-dimensional flows. 

Now we turn to the situation when the attractor is quasi-periodic. In this case, the 
solution of the stretch equation (2.5) is considerably more complicated, even for 
particles with orientations on the attractor. Indeed, it is possible for the attracting 
integral curve to be dense in some subset (or all) of the sphere of orientations. This 
means that at any instant of time, the associated integral curve of the orientation (on 
the attractor) could take on any one of a whole distribution of possible orientations. 
We emphasize that the integral curve is deterministic, but it may visit whole regions of 
orientation space over a sufficiently long interval of time. Hence the history of the 
orientations experienced by the particle is not simple to compute, as it is when the 
attractor for orientation dynamics is simply periodic. This will be clear in Example IV 
in 94.3. With this in mind, it seems that when the attractor is quasi-periodic it is more 
fruitful to consider sufficient conditions for no stretch of the particle on a given path. 
This leads to weak flow criteria, to which we return in $6. We summarize the results 
obtained in 94 so far in table 2. 

A .  J.  Szeri and L. G .  Leal 

(1/T)log5, > a, (4.5) 

4.3. Example IV: an almost two-dimensionalJEow with a wobbling vorticity axis 
The results of g4.1 and 4.2 apply to nearly two-dimensional flows as well as to fully 
three-dimensional flows ; in this example we consider a three-dimensional flow 
comprised of a two-dimensional flow with a vorticity axis that wobbles slightly in a 
time in a periodic fashion. Thus, the flow is nearly two-dimensional, and is meant to 
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Case Eigenvalues (a) Attractor Strong flow criterion 

1 61 ' 5, > 6 3  Limit cycle 1 
-log 6, > 01 
T 

2a E ,  > 1_ real Limit cycle 
6 2  = 6s 

1 
T 
-log(, > 01 

2b 6, < 1 real Quasi-periodic (in plane with ? 
6 2  = c 3  T-periodic normal) 

TABLE 2. Summary of results in periodic flows 

model what might happen in a particle dynamics experiment conducted in a faulty 
'two-dimensional' flow device. The flow we consider is a piecewise constant, periodic 
flow consisting of 

K(') = [ t 2  i], n T <  t < (n+a>T, ( 4 . 6 ~ )  

K@) = 0 - K ( ~ )  - OT, (n ++) T < t < (n + 1) T, (4.6b) 

2 0  

and 

where the multiplication by 
C O S L ~  0 sin0 

-sin0 0 cos6 
.=[ 0 1 0 1  ( 4 . 6 ~ )  

has the effect of rotating the vorticity axis of ~ ( l )  by the angle B with respect to the 2- 
axis. The piecewise-constant flow field allows us to integrate the equivalent deformation 
gradient tensor analytically. Physically, one might imagine that this example 
corresponds to a flow field that changes continuously in time, but on a timescale that 
is much shorter than the response time of a particle. 

The solution for the orientation dynamics is obtained as follows. We integrate (2.3) 
over the two subintervals independently. Over the first subinterval, we have the 
solution 

'3t O 1  2 -sin 2/3t 
f I 

1 cos 2/3t +- sin 2/ 
4 3  V '  

-2  1 
-sin d 3 t  
d3 

cos 1/3t----sin d 3 t  
4 3  

0 0 

Q(1) = 

Over the second subinterval, one can show 

We concatenate the solution over the two subintervals to obtain the PoincarC map: 

The only free parameters in our flow are the angle of wobble B and the period of 
wobble T. Hereafter, we fix the angle of wobble 0 = n/30 = 6". As we vary the period 
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Z 

FIGURE 6. Time trace of the periodic attractor of Example IV when T = 3.6. 

of the wobble T, we find the following behaviour. For all values of T we investigated 
(0 < T < 20), the periodic flow is of case 2; i.e. there is always a single fixed orientation 
of the Poincare map and an invariant great circle. The fixed point is stable (case 2 4 ,  
and the invariant circle unstable when 

T E ~  E (0 < T < 3.628) U (7.255 c T < 10.88) U C14.51 < T < 18.14). 

Otherwise, in the interval q = (0 < T < 20) -p ,  the fixed point is unstable (case 2b) and 
the invariant curve stable. Thus, when T is in p ,  the attractor is periodic, and when T 
is in q, the attractor is quasi-periodic. Presumably, there is some dependence of these 
intervals on wobble angle 8, but this we chose not to pursue. 

It is interesting to note that the period of rotation of a particle in either dl) (steady) 
or d2) (steady) is Trot = 1.8138, which is half the length of the parameter intervals that 
comprise p .  In other words, we have 

p = (0 < T <  2TroJ U {4TrOt < T <  6TrOt1 U @Trot < T < 10Trot). 

From a physical point of view, we see that the response of the particle in the time- 
periodic flow depends on the relationship between the timescale for particle response 
and the timescale of the forcing. 

Now, let us examine some integral curves corresponding to each type of attractor. 
In figure 6, we show the periodic attractor when T = 3.6 (in the set p ) .  The initial point 
on the periodic attractor is a,, = (-0.0175367,0.968394,0.248809). Note that the 
periodic attractor in this case is not a great circle, as is an attracting limit cycle for 
orientation dynamics in a simple flow. Moreover, the asymptotic dynamics on this 
attracting integral curve are phase locked, meaning that the phase on the periodic 
attractor does not depend on initial orientation. This is different from the dynamics on 
a limit cycle in steady flow. Evaluation of the strong flow criterion (4.5) yields the 
critical elastic modulus aCrit = 0.007 18. 

When T = 3.7 (in the set q), we see markedly different dynamics on the attractor. In 
order to observe dynamics on the quasi-periodic attractor, we must find an initial 
orientation on the attractor; we do this as follows. First, we compute the normal to the 
invariant plane, which is n = (-0.098025 1, -0.848 882,0.519413). Next, we compute 
a point on the intersection of the sphere of orientations with the invariant plane (i.e. 
on the invariant great circle of the Poincart map). Of course, there are an infinite 
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FIGURE 7. (a) 100 Iterates of the PoincarC map of the point uo = (0.982654,0,0.185449) on the 
invariant circle, for the flow of Example IV with T = 3.7. (b) A graph of the reduced Poincark map 
on the invariant great circle of Example IV when T = 3.7. (c) Time trace of a part of the quasi- 
periodic attractor of Example IV when T = 3.7 shown in (a). The time interval of the calculation was 
100 periods. (d )  The critical elastic modulus (defined as in Example 111) of a particle that follows the 
time trace of (c) for n periods. 

number of such points. Therefore, we choose the point with y-coordinate zero and 
obtain u, = (0.982654,0,0.185449). If we take 100 iterates of the orientation u,, we 
obtain figure 7(a). In this figure, the invariant great circle is clearly visible. The greater 
the number of iterates one computes, the more filled the circle becomest. One can 
restrict the Poincar6 map to the circle and obtain the (reduced) circle map shown in 
figure 7(b). 

The time trace corresponding to the orbit shown in figure 7(a)  is shown in figure 
7 (c). Note that a very large portion of the sphere of orientations is visited by this particle 
in a periodic three-dimensional flow, although it seems that the regions near the 'poles' 

t In a numerical calculation such as this one, however, it is impossible to tell whether this is truly 
a case of multiple, incommensurate frequencies in the response, or rather a strictly periodic response 
of period mT, where m is a large integer. 
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are avoided. If we carry out this calculation for a longer time, the visited portion of the 
sphere is more densely filled. Obviously, the history of the orientations on the attractor 
(which do have a phase dependence on initial conditions) is extremely complicated. It 
is for this reason that we were unable to give a well-defined strong flow criterion for 
case 2b of table 2. However, it is possible to compute a critical a for a trajectory that 
follows the attractor for a finite time. For the trajectory shown in figure 7(c), the 
critical a below which a particle will stretch is shown in figure 7(d). Note the difference 
in behaviour over the first few iterates and in the long term. It is exactly this very 
complicated history of orientations experienced by the particle that prevents us from 
formulating a well-defined strong flow criterion when the attractor is quasi-periodic. 

We remark that the global, geometric features of these complicated dynamics in the 
Lagrangian frame are considered in detail by Szeri (1993). 

5. Flows with general time-dependence 
In the interest of completeness, we consider briefly microstructure suspended in 

three-dimensional flows with general time-dependence ; this is a relatively straight- 
forward extension of the analysis of $4. In what follows, we shall consider particle 
dynamics over a time interval of interest, 0 d t d T, where Tis chosen so as to include 
interesting features of the flow. 

The solution to the orientation dynamics problem may still be represented in the 
form (2.4). Consequently, there will in general be either one or three fixed orientations 
of the map 

If there is a single fixed orientation for the map (5.1) ( UPixed) then nearby orientations 
approach the integral curve u(t; Ufixed) if the eigenvalue of Q(T) associated with Ufixed 
(lQ(T) - Ufixedl) is less than one. Nearby orientations diverge over the time interval if 
the eigenvalue is greater than one. Note that we cannot conclude true stability or 
instability of the integral curve u(t;  UfiXed) by these arguments, because we can only 
treat finite time intervals. If there are three fixed orientations for the map (5.1) over the 
interval 0 < t d T, the integral curve passing through the eigenvector of Q(T) 
associated with the maximum eigenvalue attracts nearby orientations over the time 
interval. 

As in $53 and 4, it is possible to relate the dynamics in the stretch degree of freedom 
to the equivalent deformation gradient tensor Q(T).  We use the map (5.1) and the 
result (4.2), which also applies in the present context, to derive a history-dependent 
strong flow criterion 

1 
T max-log lQ(T) u, I > a. 

I ko l ' l  

This completely general criterion accounts for the history of flows experienced by the 
particle, as well as the history of the orientation dynamics of the particle. The criterion 
may be specialized to flows that are steady or time periodic from the point of view of 
the particles, in which case the earlier criteria we developed, (3.11), (3.12), (4.5), 
emerge. In practice, it may be more useful to apply the sufficient conditions for weak 
flow that we derive in the next section. 
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6. Weak flow criteria in the absence of detailed information 
History-dependent strong flow criteria may be cumbersome to apply in some 

practical situations since both detailed knowledge of the orientation dynamics of the 
microstructure and of particle paths in the flow are required. Moreover, strong flow 
criteria may be impractical in cases where the attracting set for orientation dynamics 
is complicated, e.g. quasi-periodic. These practical considerations motivate the analysis 
of this section. 

6.1. Suficient conditions along a particle path 
First, consider the necessary and sufficient condition for a flow to stretch microstructure 
in some initial orientation along a given particle path, the general history-dependent 
strong flow criterion (that may be derived from (2.5)), 

We shall bound the integral in (6.1) using the properties of the rate-of-strain tensor. At 
any instant of time t, the rate-of-strain tensor has eigenvalues sl(t), s,(t) and s3(t), 
which sum to zero if the flow is incompressible. Let us suppose that these are ordered 
so that s1 2 s, > s3 for all 0 < t < T; thus s,(t) > 0 and s3(t) d 0 over the time interval. 
At any instant of time t, the integrand of (6.1) may be bounded by the inequalities 

Gs3(t) < ~ ( t ) :  u(t; uo) u(t; u,) d Gs,(t). (6.2) 
These bounds are obtained simply by evaluating the integrand in the directions (u) 
where it is maximum and minimum, i.e. in the directions of the (instantaneous) 
eigenvectors of E corresponding to sl(t) and s3(t), respectively. The important thing to 
note about the bounds is that the dependence on the orientation dynamics u(t;uo) is 
avoided. 

Along a given particle path, it is a simple matter to bound the integral in (6.1) by 

Thus, there can be no stretch of the microstructure if 

01 sl(t) dt < - 
G' 

In words, there can be no stretch of the microstructure along a particle path on which 
the average of the maximum eigenvalue of the rate-of-strain tensor is too small. This 
weak flow criterion retains the history of the flows experienced by the microstructure 
on a given path, but disregards the history of the orientation dynamics of the 
microstructure in favour of a simpler, but more conservative, criterion. 

6.2. Suficient conditions in a region 
Additionally, one can derive a weak flow criterion that applies to regions of flow, thus 
disregarding the history of the flows experienced by the microstructure in order to 
obtain an even simpler (and even more conservative) criterion. Consider a fixed 
(spatial) region A in the domain of the flow; A might be a region bounded by an 
envelope of closed particle paths in a recirculating flow, for example. Suppose further 
that the maximum eigenvalue of the rate-of-strain tensor anywhere in A is smaX. Then 
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along any particle path which lies in the region A during the time interval 0 d r d T, 
we have an upper bound for the integral on the left-hand side of the inequality (6.3): 
s,,,. Thus if 

there can be no particle path lying wholly in A on which there is a net stretch of the 
microstructure over the interval 0 6 t < T. 

7. Conclusions 
In this paper, we have analysed the dynamical behaviour of microstructure in three- 

dimensional flow fields that are steady and time dependent in the Lagrangian frame of 
the microstructure. We paid particular attention to generic behaviour, as that is what 
one would expect to find in a physical flow. The exception is our discussion of 
bifurcations that connect different generic flows through a non-generic flow. 

In steady flows, orientation dynamics are characterized by the presence of either a 
unique, globally attracting equilibrium orientation or a unique, globally attracting 
limit cycle. It is important to note that one need not perform the entire analysis to 
determine what type of behaviour will occur in a steady flow : if there is a positive real 
eigenvalue of K, then the attractor is a steady orientation; if there is no positive real 
eigenvalue, the attractor is a limit cycle in a plane. In either case, all particles forget 
their initial orientation, except that the ‘phase’ of motion on the limit cycle is a 
function of initial orientation. We derived appropriate strong flow criteria for stretch 
of the particles in both cases by analysing stretch of the particles which follow the 
relevant attractor for the orientation dynamics. 

In time-periodic flows, we analysed orientation dynamics in the PoincarC map 
constructed from the equivalent deformation gradient tensor Q. We showed there is 
either a globally attracting fixed orientation, or a globally attracting invariant great 
circle. These motions correspond to a periodic integral curve of the underlying 
differential equation or to a quasi-periodic integral curve, respectively. Thus, the 
orientation dynamics is phase locked with the forcing, or quasi-periodic. In either case, 
all initial orientations are forgotten, except that the ‘phase’ on the quasi-periodic 
attractor depends on initial orientation. Again, we remark that one need not perform 
the entire analysis to determine what type of behaviour will occur in a time-periodic 
flow: if there is a real eigenvalue of 0 greater than 1, then the attractor is a phase- 
locked limit cycle; if there is no real eigenvalue of Q greater than 1, the attractor is 
quasi-periodic. We derived a strong flow criteria in the phase-locked case. 

The complexity of the orientation dynamics in the case of a quasi-periodic attractor 
motivated the development of weak flow criteria for the stretch of particles in a flow. 
In the first such criterion, we neglected the details of the history of the orientation 
dynamics, but retained the history of the flow. In a second criterion, we disregarded the 
detailed history of the flow as well. These criteria will no doubt find application in flows 
of a more complicated time-dependent nature than those we could treat analytically. 
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